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a Ship Laboratory, Helsinki Uni�ersity of Technology, Helsinki, Finland
b Laboratory of Aerodynamics, Helsinki Uni�ersity of Technology, Helsinki, Finland

SUMMARY

This paper describes a method for simulation of viscous flows with a free surface around realistic hull
forms with a transom, which has been developed based on a FINFLO RANS solver with a moving mesh.
A dry-transom model is proposed and implemented for the treatment of flows off the transom. The bulk
RANS flow with the artificial compressibility is solved by a cell-centred finite volume multigrid scheme
and the free surface deformed by wave motions is tracked by satisfying the kinematic and dynamic
free-surface boundary conditions on the actual location of the surface. The effects of turbulence on flows
are evaluated with the Baldwin–Lomax turbulence model without a wall function. A test case is modern
container ship model with a transom, the Hamburg Test Case. The calculated results are validated and
they agree well with the measured results in terms of the free-surface waves and the total resistance
coefficient. Furthermore, the numerical solutions successfully captured many important features of the
complicated interaction of the free surface with viscous flows around transom stern ships. In addition, the
convergence performance and the grid refinement studies are also investigated. Copyright © 2001 John
Wiley & Sons, Ltd.

KEY WORDS: dry-transom model; FINFLO RANS solver; modern hull forms with a transom; moving
mesh; viscous free surface flows

1. INTRODUCTION

Realistic motion of ships in turbulent flow is always complex in the presence of the free
surface. The prediction of the physical process is a more complicated problem that requires full
knowledge of the interaction of the wave structure with the viscous boundary layer. With the
advent of powerful computers for numerical calculation, it is possible for application of the
advanced computational fluid dynamic (CFD) techniques to resolve the mathematical model,
which describes the mechanism of the interaction. Furthermore, the total ship resistance
experienced by an advancing ship at a constant forward speed can be evaluated in a numerical
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water tank, and it is one of the main interests of industry. Therefore, it is desirable to develop
a reliable and robust method in order to enhance greatly the hull design capabilities.

The early approaches in this area are the finite difference (FD) methods [1,2]. Later works
can be found from [3,4]. Recently published papers are given in [5,6]. Tahara and Stern [7]
developed a finite-analytic (FA) method. For these approaches, the governing equations with
non-conservative form are solved and the location of the free surface is determined in the
computational domain up to the viscous sublayer. On the other hand, an interactive approach
[8,9] is, respectively, to solve the Reynolds-averaged Navier–Stokes (RANS) equations with
the free surface in the near-wall field and the potential flow in the far field by the panel
method. This method can save CPU time considerably but the definition of the interface
between two domains requires special attention. In particular, the wake behind the stern covers
a wide range, which causes the division of the interface between a viscous flow and an ideal
flow not to be clear. A current major approach is to apply a finite volume (FV) method that
satisfies the conservation of mass and momentum over the whole computational domain. It is
also basic in four current popular CFD codes: PHOENICS, FLUENT, FLOW3D and
STAR-CD. Using a FV method, Miyata [10] developed a computer code for ship flow
problems. The calculated results seem to reveal some interesting features for the HSVA tanker
model at a low ship speed. This is a very full hull form but different from fast container vessels.
A moving mesh, that is, the so-called interface-fitting method, has been widely implemented,
where the boundary conditions at the interface are given explicitly. Two test cases for simple
ship models, the Wigley hull and the Series 60 (S60) ship, have been achieved.

Nevertheless, a comparison of the wave pattern obtained by most methods that represent the
major advances with the experimental data is not satisfactory even for the S60 ship model.
Some reason may be found in grid resolution for the wave propagation [11]. Hino [12]
investigated grid dependency. It is thought that the wave fields away from the hull are
significantly influenced by grid spacing. Alessandrini [13] obtained a significant improvement
in convergence rate past the S60 ship model with the O-O topology grid based on the fully
coupled algorithm. The O-O or O-C topology grid seems to be promising for resolution of ship
flow problems [14], although the O-H grid is the most popular grid topology. For transom
stern ships, the type of grid suitable is necessitated, especially in the transom domain due to
the singularity of the transom corner for fluid flow [15]. Furthermore, it is a more difficult case
in view of the physical sensitivity in the prediction of viscous free surface flows off a transom
[16]. One approach is to introduce the technique of domain decomposition according to the
region of interest, such as at the transom stern, and to use the multiblock strategy [17,18]. The
application of unstructured grids is also interesting [19]. In particular, problems like overturn-
ing at a bulbous bow as well as unsteady bubbling or boiling behind a transom stern [20] may
be encountered and have to be avoided during the simulation. For improvement of the
stability of the free-surface computations, the former could be filtered with the local extremum
diminishing (LED) principle [17], and the latter can be approximated by the use of the
dry-transom model of enforcing the water to detach from the base of the transom junction
[21].

Using a moving mesh creates moderate distortion of the free surface. For more complex
configurations of interest, such as breaking waves or topology changes, the moving grid system
becomes somewhat unrefined. An alternative is to use the interface-capturing methods, e.g. the
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volume of fluid (VOF) method [22,23], the marker and cell (MAC) methods [1,2] and the
level-set method [24], where the boundary conditions at the interface are approximately
satisfied on a predetermined fixed grid, which extends to the air region but is not fitted to the
free surface. Takafumi [25] suggested that a sufficient number of grid points are required for
construction of fine grid spacing when using the density-function method similar to the VOF
method. Otherwise, the accuracy is inferior to that with a moving mesh. This may be improved
with the adaptive grid [26] and the Chimera grid blocks [27].

The principal objective of the present study is to develop a computational method that can
simulate complex viscous free-surface flows around realistic hull forma with a transom. The
free surface is tracked by introducing a moving body-fitted grid system according to wave
motions. A dry-transom model for the treatment of flows behind a transom is proposed. A
container ship, the Hamburg Test Case (HTC), provide by the Hamburg Ship Model Basin
(HSVA), Germany, and recommended by ITTC, is selected as the test case. Only steady state
flow is studied in the present case. The FINFLO RANS solver [28], the treatment of the free
surface and the dry-transom model are described in Section 2, and then the results and
discussion are given for the HTC model in Section 3. Some concluding remarks are made in
Section 4.

2. NUMERICAL METHODS

2.1. Mathematical models

For resolution of ship wave problems in the Cartesian reference co-ordinate system Oxyz (see
Figure 1), where the origin O is fixed at the intersection of the bow with the still free surface,
x is positive in the aft direction, y is positive towards the starboard and the z-direction is
positive upwards, the RANS equations can be written in the following compact form:

Figure 1. A reference co-ordinate system around the HTC model.
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where U= (�, �u, ��, �w)T. � is the density of the fluid, and u, �, and w are the velocity
components in the x-, y- and z-directions respectively. These are chosen as the dependent
variables and the independent variables are the co-ordinates x, y, z and time t. If the turbulent
kinematic energy k and the gravitational force g are included in the total pressure p, then
inviscid fluxes F, G and H in Equation (1) are
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In the present method, the so-called piezometric pressure � is solved instead of p. The viscous
fluxes F�, G� and H� are
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In expression (4), the viscous stress tensors, �ij (i, j=1, 2, 3), are defined as
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Based on Boussinesq’s approximation, the Reynolds stresses, �u �iu �j, are written in the form of
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where V=uib +�jb +wkb and �=��. � is the kinematic viscosity of 1.01×10−6 m2 s−1 and �ij

is the Kronecker’s symbol. �t is the turbulent viscous coefficient and its value is dependent on
the turbulence model employed. Equations (5) and (6) are written in tensor notation with the
usual summation convention assumed. The last term −2

3�k in Equation (6) has been absorbed
to the piezometric pressure �.
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The artificial compressibility [29] is introduced and added to the term of ��/�� in order to
enforce incompressibility. Hence, the resulting expression for the speed of sound c becomes [30]

1
c2=

1
c0

2+
1

c true
2 (7)

and c0 is the artificial compressibility coefficient. It is formulated as

c0=�t�u2+�2+w2 (8)

in which �t is a constant between 3 and 10 [31]. Furthermore, the equation of the state of
motion for a compressible fluid is given by

�=c0
2� (9)

2.2. Solution procedures

A cell-centred FV method is used for discretization of the integral form of the conservation
Equation (1), which can be derived from the differential form by integrating over a control
volume and applying the Gauss theorem. Following the general approaches within the
cell-centred FV method, Equation (1) can be expressed as

�

�t
�

V

U dV+
�

S

F(U) · dS=0 (10)

for an arbitrary fixed region V with a boundary S. Since the computational domain is divided
into a set of hexahedrons, the integration for each cell yields

V
�U
�t

= �
face

−SF� (11)

where the sum is taken over the faces of the computational cell, and the inviscid fluxes and
viscous fluxes for the face are defined as

F� =nx(F−F�)+ny(G−G�)+nz(H−H�) (12)

where nx, ny and nz are the normal components of the surface outwards in the x-, y- and
z-directions respectively. F, F�, G, G�, H and H� are the fluxes defined by Equations (2)– (4).

The inviscid fluxes are evaluated from the method of Roe [32], and the MUSCL-type
approach is used for extrapolation of the solution vectors on the left and right states of the cell
surface. In addition, the viscous fluxes are solved with a thin-layer approximation that can
be activated in any co-ordinate direction and the velocity at the cell surface is obtained as
an average from the nodal values. For integration of Equation (11) in time, the DDADI-
factorization based on the approximate factorization as well as the splitting of the Jacobian
flux terms [33] is employed. Thus, Equation (11) can be written after factorization as follows:

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 601–624



T. LI, J. MATUSIAK AND R. LEHTIMA� KI606

�
I+

�t
V

(� i
−Si+1/2Ai

+ −� i
+Si−1/2Ai

−)
n

×
�

I+
�t
V

(� j
−Sj+1/2Bj

+ −� j
+Sj−1/2Bi

−)
n

×
�

I+
�t
V

(�k
−Sk+1/2Ck

+ −�k
+Sk−1/2Ck

−)
n

×�U=
�t
V

R (13)

This is the implicit stage. Since the sweeps are based on a first-order upwind-difference scheme,
Equation (13) forms a tridiagonal matrix and consists of a backward and forward sweep in
every co-ordinate direction. It is noted that � i, j,k

− and � i, j,k
+ are first-order spatial difference

operations in the i-, j-, and k-directions respectively, �t is the local time-step dependent of the
Courant number, R is the right-hand side of Equation (11), and A, B, and C are the
corresponding Jacobian matrices and calculated, such as for A�, by

A� =R(�� +kI)R−1 (14)

where �� are diagonal matrices containing the positive and negative eigenvalues, and k is a
factor for the diagonally dominant factorization in that it can ensure the stability of the
viscous term in the calculation.

The multigrid method [34] is implemented to improve the convergence properties of the
solution variables. The algorithm used a sequence of coarser meshes that are generated
independently. Each coarser gird may be constructed by merely connecting every second grid
point in each co-ordinate direction. The solution on grid level hi is driven by the residuals
obtained on grid level hi−1 (where hi denotes the grid level and h1 the finest level). Hence
Equation (1) can be rewritten as

�U
�t

=R (15)

where R is the residual and defined as

R=� −SF� (16)

The solution vectors on grid level hi are first initialized based on those at the fine grid level
hi−1, and then the new residual is obtained from the sum of residual of Equation (16) and the
forcing function. The solution vectors and the residual on grid level hi−1 are transferred to the
next coarser grid level hi ; and they are performed as respectively

Uhi

t =� Vhi−1
Uhi−1

/Vhi
(17)
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and

R �hi
=� R*hi−1

(18)

where the sum is taken over the cells which approximately occupy the cell on the coarse grid.
This procedure of evaluation of the solution vectors and the residual is repeated until the

coarsest grid level is reached. Finally, the corrections are transferred back to the finer levels
with an interpolation operator. A V-cycle of the multigrid method is implemented in this case.
A more detailed description is given in [35].

2.3. Turbulence modelling

The introduction of a turbulence model is necessary for the present mathematical model at a
very high Reynolds number of 106–109, such as the sub-grid scale (SGS) model [10], the k–�

or k–	 turbulence models [13], and the Baldwin–Lomax (B–L) turbulence model [36]. Of all
these models, the B–L model is common due to its simplicity, in which the boundary layer is
removed and the effects of the transition on turbulence are neglected in evaluation of the
turbulence viscosity. Furthermore, the current study [13] shows that the wave fields around the
S60 hull are not strongly dependent on the turbulent model, whereas the best performance is
offered for the total drag coefficient by the k–� model in comparison with the algebraic model
of the B–L as well as the one-equation model for the American combatant ship DDG51
(INSEAN model 2340) [18]. This is, probably, because the model 2340 is more complex than
the S60.

In this paper, the B–L model is chosen based on the studies [30,37]. It is a two-layer,
isotropic eddy viscosity formulation and performs well for problems that do not exhibit large
regions of separated flow. In this model the turbulent viscosity is evaluated by

�t=
��t,inner if y�yco

�t,outer otherwise
(19)

where y is the normal distance from the wall and yco is the minimum value of y at which the
values of �t from the inner and outer match. The inner viscosity follows
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and
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l=ky(1−e−y+/A0
+

) (22)

In the outer layer the viscosity is given by

�t=�
CcpFwakeFkleb (23)

where 
 is the Clauser constant, Ccp is the additional constant and Fwake is expressed as

Fwake=min(ymaxFmax, CwkymaxUdiff
2 /Fmax) (24)

The quantities Fmax and ymax are determined from the function

F(y)=y �	 �(1−e−y+/A0
+

) (25)

in which Fmax is the maximum value of F(y) that occurs in a profile and ymax is the value of
y at which it occurs. In the wake, the exponential term of Equation (25) is set equal to zero.
Udiff is the difference between the maximum and the minimum resultant velocity. Fkleb is
defined

Fkleb=
�

1+5.5
�Ckleby

ymax

�6n−1

(26)

The corresponding model constants are given in Table I.
Note that y+ in Equation (22) is the non-dimensional distance from the wall and is defined

as

y+ =
�yu�

�
(27)

where u�= (�w/�)1/2. �w is the wall stress and is evaluated by �w=� �u/�y without the law of
the wall on the wall. In the present case, y+ �1.6.

2.4. Boundary conditions

2.4.1. Free surface boundary conditions. The boundary conditions on the free surface consist of
one kinematic and three dynamic conditions. The kinematic condition on the free surface state
that the free surface is a material surface and it may be expressed in the form of

Table I. Empirical coefficients in the B–L model

CklebCcp CwkA0
+k 


0.0168 26 1.6 0.3 1.00.41
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�h
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where h(x, y, t) is the wave height with respect to the undisturbed free-surface. ug and �g are
the velocity components of the grid movement, which are often ignored but may reduce the
convergence rate to a steady state, although this treatment does not affect the accuracy of the
solution [12]. The dynamic conditions represent the continuity of the normal and the tangential
components of the stresses on the free surface, which give the pressure and the two
components of the velocities (u, �) on the free surface respectively. Another component of the
velocity (w) is always from the continuity equation [6]. This is a totally different approach
proposed by Alessandrini [13], in which the two tangential dynamic condition along with the
kinematic condition give three components of the velocities on the free surface and the free
surface location is evaluated according to the normal dynamic condition. In the present case,
the effects of the surface tension and the free surface turbulent boundary layer are neglected.
This results in the approximate normal stress conditions through setting the pressure acting on
the free surface to be equal the atmosphere pressure, which is set as zero. As a result, the
piezometric pressure � on this surface is expressed by

�=�gh (29)

This gives the Dirichlet condition for the pressure on the free surface. The condition for the
tangential stress is approximated by the following zero normal gradient extrapolation:

�u
�n

=
��

�n
=

�w
�n

=0 (30)

where n is the component normal to the free surface. In this case, the components of the
velocities on the free surface are supposed to be equal to those adjacent to grid points, whereas
this is not to satisfy the local conservation of mass in the cell near the free surface. As pointed
out by Miyata [10], nevertheless, these simplifications made at the very thin thickness in this
region do not seriously influence the accuracy.

Since the body-fitted co-ordinate system is implemented and fixed to the free surface,
Equation (29) is conveniently imposed and it is exactly satisfied. With the partial transforma-
tion approach, in which only the independent variables (x, y, t) in the physical domain are
transformed into non-orthogonal curvilinear co-ordinates (�, �, t) in the computational do-
main, Equation (28) can be rewritten in the following form:

�h
�t

= f (31)

where the residual f is expressed as

f=w−
�

u*
�h
��

+�*
�h
��

�
(32)
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with the contravariant velocities u* and �*. They are given respectively

u*= (ub1
1+�b2

1)/J (33)

�*= (ub1
2+�b2

2)/J (34)

where bi
j is the contravariant basis of the two-dimensional transformation, which is given by
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��m
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��n−
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��m
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��n

and the Jacobian J is evaluated by

J=det
��x j

�� j

�
If the second-order explicit Adams–Bashforth scheme is applied for integration of Equation
(31) in time, the updated wave height at the next time step (n+1) is given by

hn+1=hn+
1
2

�t(3f n− f n−1) (35)

where �t is the time step, which may be set to be different from that in Equation (13) due to
our currently uncoupled approach. The spatial derivative of the free surface elevation in
Equation (32), such as for the spatial indices i, j, is evaluated with a third-order upwind-
difference scheme of

�h
��

=sign(1, u*)(hi−2, j−4hi−1, j+6hi, j−4hi+1, j+hi+2, j)/12

+ (hi−2, j−8hi−1, j+8hi+1, j−hi+2, j)/12 (36)

and a similar expression holds for �h/��. Thus, Equation (35) can be solved once the initial
conditions and the boundary conditions at the external cell, including the ghost cells surround-
ing the fluid domain, are given by

h(x, y, t)=0 at t=0 (37)

and by the mirror condition respectively.
As shown in Equation (28), the numerical singularity is always met at the intersection of the

free surface with the hull surface as the components of the velocity on the hull verify the
no-slip conditions. We avoid this problem through setting all variables to the centre of the cell,
where the wave height on the hull is obtained with a second-order extrapolation. It is found
that the calculation is more stable when the wave height in the area close to the hull surface
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is extrapolated from that specified outside this region by the use of the linear least-square fit.
This is because there is a very large aspect ratio of the grid within the boundary layer, especially
for realistic hull form with a bulbous bow and a transom stern. Furthermore, the vortices are
significant in the vicinity of the free surface layer [10] and within the boundary layer [13]. As a
result, the extrapolation of the wave height advantages for removing wave oscillations. Note that
the filtering for the free surface is necessary during the simulation, because it can retain the
minimum user-specified region of the extrapolation. More detail is given in Li [38,39].

2.4.2. The dry-transom model. Once the free surface is updated at each iteration by Equation (35),
the grid points along the body surface and on the free surface are redistributed using a linear
interpolation [40], which is performed based on the predetermined grid that extends to the air
region. It works well before the water touches the transom stern. This is because flows off the
transom stern are often accompanied with a very complex phenomenon, such as a bubble flow,
which may not explain within the present moving mesh system. Based on the LED principle and
the so-called essentially local extremum diminishing (ELED) scheme, Cowles [17] introduced
locally the lower-order dissipation to the free surface computations in order to prevent similar
problems like spray formation or wave breaking at the bow. This may be more suitable for
stabilizing the calculation and avoiding the overturning of the waves [41]. Another approach is
to extrapolate linearly the wave height in the domain near the hull surface [6]. Without any
additional assumptions, Takafumi [25] studied the high-speed transom ship flows using the
modified density function technique but this is rather more common for merchant vessels.

Our experience shows that the free-surface waves in the area off the transom always oscillate
due to the strong unsteady motions in this region. To improve the stability, the treatment of the
free surface downstream of the transom stern is required, and a possible choice is to use the
dry-transom model, in which the water is first enforced to detach from the base of the transom
junction, such as at the point A (see Figure 2); and then the wave height at this point is set to be
equal to the vertical co-ordinate of the transom profile. In our dry-transom model, it is necessary
to search the location of the first wave peak along the transverse wave profiles, such as the point
B (see Figure 2). The key procedure is to extrapolate linearly the wave height, which prevents the
skewness of the deformed mesh on the free surface. The extrapolation range should be restricted
to a finite distance, rAB (see Figure 2). Thus, the wave height hp at the point p between A and B
is determined from�1

rp

+
1

rAB−rp

�
hp=

1
rp

hA+
1

rAB−rp

hB (38)

where rp is the distance of the point p to the hull surface. Furthermore, the local directional
derivative of the waves in this region must be less than that at the detached point along the
vertical direction of the hull surface. Otherwise, the deformed mesh may result in skewness that
induces cells of negative volume occurring. A single block O-O type mesh is employed and the
calculated results show that this grid is suitable for the treatment of the transom stern and the
bulbous bow.

The overall solution procedure is first to solve the bulk RANS flow and to continue three
times at each cycle owing to a fully implicit stage when the initial conditions, such as a uniform
flow, and the boundary conditions are given. Finally, the free surface is updated based on the
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Figure 2. Transom stern treatment, the HTC model. A, detached point; P, extrapolation point; B, wave
peak.

extrapolation of the velocity of the bulk RANS flow and the pressure on this surface is
adjusted. In addition, the conditions on the other boundaries are renewed. The entire process
is repeated until the steady flow state is reached. An example of the deformable mesh at this
state is given in Figure 3, which displays the deformable hull surface and the free surface at the
bow and the transom respectively. This provides a detailed observation in the region of
interest.

2.4.3. Other boundary conditions. No-slip conditions are imposed on the wetted part of the hull
surface, that is, all the velocity components on the surface are zero, while the pressure on this
surface is obtained by the Neumann (zero gradient) scheme. At the inlet, a uniform flow is
given. At the outlet, all variables are extrapolated with the Neumann (zero gradient) approach.
On the centreline boundary and the external boundary, the symmetry condition for all
variables is implemented. Most of them can be observed in Figure 1.

3. SIMULATION OF TYPICAL MODERN CONTAINER VESSELS

3.1. The HTC model

A typical modern container vessel, the HTC model, is chosen as the test case. It is equipped
with a bulbous bow and a transom stern (see Figure 4). The principal dimensions of the ship
model, ship length (L) between perpendiculars, breadth (B) and draft (D) at the forward
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Figure 3. Deformable mesh, the HTC model. Left: at the bow. Right: at the transom.

Figure 4. Side profile, the HTC model.

perpendicular and the aft perpendicular, are L=6.404 m, B=1.145 m, TF=0.383 m and
TA=0.429 m respectively. The numerical simulation is performed with three grids around the
HTC model (CB=0.645) at a Froude number (Fn=U/�gL) of 0.25 and a Reynolds number
(Rn=UL/�) of 1.255×107 based on the reference velocity U, which corresponds to the
experimental case at Fn=0.249 and Rn=1.232×107 [42]. The finest mesh is 141×129×45
(818505 nodes) in the streamwise, the normal and the girth directions respectively. The
computational domain (see Figure 1) is −2.9�x/L�3.8, 0�y/L�2.8 and −2.8�z/L�
hmax (the calculated maximum wave height). One half of the hull is considered for the
computations since it is assumed as symmetrical. All the calculations are carried out on a
Silicon Graphics Origin2000 Computer provided by the Centre for Scientific Computing
(CSC), Finland.

3.2. Mesh structure

A single O-O topology grid around the HTC model is shown in Figure 5, in which the mesh
is clustered near the hull surface due to the implementation of the no-slip conditions on the
wall without the wall function; the inlet, outlet and external boundaries are located far away
from the hull to damp the free-surface waves and to prevent the reflection of the waves at these
boundaries. Moreover, to capture the gravitational effects, relative fine mesh is constructed in
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Figure 5. A single O-O topology grid, the HTC model.

the region outside the boundary layer, where the change of the size between the grid points is
kept as almost uniform (see Figure 5).

3.3. Con�ergence history

3.3.1. Momentum and pressure. Figure 6 presents the convergence histories of the L2 norm of
residuals for the momentum (U, V, W) in the x-, y- and z-directions, and the pressure (P) at
the coarsest, the medium and the finest mesh respectively. These provide a global measurement
of error both in divergence of mass and in conservation of momentum. The residual reduction
is the order of below 10−5 at the finest mesh (see Figure 6), while the decrease at the coarsest
mesh is about 10−5. It appears that the equations for the continuity and the momentum are
satisfied to some extent. As a result, the present discrete problem may be achieved with the
desired accuracy up to the round-off errors.

3.3.2. Total resistance coefficient, CT. Figure 7 displays the convergence history of the total
resistance coefficient CT, which is a summation of the tangentially frictional resistance and the
total pressure integration, at varying levels respectively. It is non-dimensionalized by 1/2�U2S,
where S is the reference wetted-surface area. The calculated total resistance coefficient (CT) at
the finest mesh is CT=4.421×10−3 in the steady state, which is closer to the experimental
value of CT=4.222×10−3 with the relative error of 4.7 per cent, as shown in Figure 7. This
is very encouraging in that the comment with regard to convergence and accuracy is mainly
from its information. Note that the total CPU time required at the finest mesh is expensive
(about 5 days) as compared to that (about 1.8 days and 10 h) for the medium mesh and the
coarsest mesh respectively. It is expected that a parallel multiblock approach will be imple-
mented in the near future.
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Figure 6. Convergence histories of L2 norm of residuals for (U, V, W, P), the HTC model (Fn=0.25 and
Rn=0.255×107). Top: at the coarsest mesh (36×33×12). Middle: at the medium mesh (71×65×23).

Bottom: at the finest mesh (141×129×45).

3.4. Grid refinement study

The dependence of the grid size on the free-surface waves and CT is studied with three grid
levels (see Table II). The coarsest mesh (level-3) is 36×33×12, the medium mesh (level-2) is
71×65×23 and the finest mesh (level-1) is 141×129×45 with the refinement ratio of 2 in
each co-ordinate direction. Figure 8 shows the surface-wave profiles for these three levels. The
profiles are drawn in the region from the bow (x/L= −0.5) to the stern (x/L=0.5) and the
values of the wave height are made dimensionless with the ship length (L). It is clear that the
difference of all the curves is rather small, except for level-3, where the grid points seem to be
too small. Furthermore, the wave profiles for level-2 can be comparable with the experimental
data, whereas CT at this level is poor (see Table II). In this case, a minimum spacing of grid
in the y-direction is 1.06×10−5 and the value of y+ is 3.2. Thus, one can conclude that the
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Figure 7. Convergence history of the total drag coefficient, CT, the HTC model (Fn=0.25 and
Rn=1.255×107). Top: at the coarsest mesh (36×33×12). Middle: at the medium mesh (71×65×23).

Bottom: at the finest mesh (141×129×45).

Table II. Grid convergence study of CT (×10−3) for the HTC model

DataGrids CT E

8.473 N/A 4.222Level-3: 36×33×12
2.7695.704Level-2: 71×65×23

Level-1: 141×129×45 4.421 1.283
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Figure 8. Grid refinement study and comparison of the surface-wave profiles with the experimental data,
the HTC model (Fn=0.25 and Rn=1.255×107). Level-1: 141×129×45; level-2: 71×65×23; level-3:

36×33×12.

effect of the grid size within the boundary layer on the surface-wave profiles is weak but it is
very important for prediction of a viscous resistance.

The grid convergence study for CT from level-3 to level-1 is assessed, as given in Table II,
where E is the relative error between successive grids. CT at level-1 is closer to the data due to
the smallest y+ of 1.6.

Figure 9 illustrates the wave contours for these three levels, in which the difference between
them is quite small in the region near the hull surface for level-1 and level-2. Nevertheless, it
is apparent in the domain away from the hull surface, where the effects of the grid size on the
free-surface waves are large for all the levels. This is similar to the study of Hino [12] for the
case of a simple hull form, the Series 60 hull.

3.5. Wa�e profiles

A comparison of the calculated surface-wave profiles with the experiment is made in Figure 8.
For level-1, the results agree very well with the experimental data except for those at the
midship (x/L=0.0), whereas those at level-2 can be reproduced well. The wave profiles after
x/L=0.3 are rather flat as compared with the bow wave peak due to the effect of the transom
stern. This is a typical characteristic for this kind of ship form. It also implies that our
dry-transom model works well. The reason for the discrepancy in the region at x/L=0.0 is not
clear. But the hump and hollow of the wave profiles within this range are well reproduced. An
improvement is expected if the effects of the trim and sinkage are taken into account.

For the far-field waves at y/L�0.2 off the hull surface, they are consistently underpredicted
and lack detail [16]. Unfortunately, no experimental data are available for those at the
Fn=0.25. Thus, we consider the case of a higher Fn=0.28 at the finest mesh due to the
measurements available (the grid and the computational domain are the same as those
mentioned above for Fn=0.25). The results of the longitudinal wavecuts at y/L=0.1836 and
0.2616 show very good agreement with the measured data in the bow region, as shown in
Figure 10. Moreover, the transom stern waves are simulated well. Nevertheless, the difference
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Figure 9. Wave contours at three grid levels, the HTC model (Fn=0.25 and Rn=1.255×107). Level-1:
141×129×45; level-2: 71×65×23; level-3: 36×33×12. Solid lines for crests; dashed lines for trough.

Levels: 0.0003.

Figure 10. Comparison of the longitudinal wavecuts at the finest mesh with the experiment, the HTC
model (Fn=0.28 and Rn=1.443×107). Left: y/L=0.1836. Right: y/L=0.2616.
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between the calculation and the experiment remains obvious at the midship. This requires
further study.

3.6. Wa�e contours

The wave contours in Figures 9 and 11 show a typical characteristic of a container vessel with
a transom stern. The systems of the divergent waves and the transverse waves are clearly

Figure 11. Comparison of the wave contours between the computations and the experimental data for
three grid levels, the HTC model (Fn=0.28 and Rn=1.443×107). Solid lines for crests; dashed lines for

trough; levels: 0.0003. Level-1: 141×129×45; level-2: 71×65×23; level-3: 36×33×12.
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observed from these two figures and the former is dominant. The effect of the transom stern
on the wave fields is also visible. It clearly diminishes the stern wave systems.

Figure 11 displays the wave contours for these levels at Fn=0.28, including a comparison
with the experimental data. For level-1 and level-2, the simulation captures well the near-field
waves, especially for level-1, and the effects of the grid density on the waves in the domain
close to the hull surface are also rather small even for a higher Fn. Nevertheless, there still
remains a discrepancy between the computations and the measurements in the wake due to
the damping.

3.7. Pressure distributions

Figure 12 presents the pressure contours on the hull surface at the finest mesh, where the
pressure is made non-dimensional with the stagnation pressure 1/2�U2. It displays higher
pressure at the bow than at the stern and low pressure at the midship (see Figure 12). This is
common for this type of ship form.

3.8. Velocity fields

Figure 13 illustrates the velocity vectors (�, w) and the contours of the velocity (u) for
level-1 at three cross-sections: close to the stern (x/L=0.90), at the propeller planer and
in the near wake (x/L=1.01). The three components of velocities (u, �, w) are non-dimension-
alized by the reference velocity U. At at x/L=0.9, the thick boundary layer on the concave
surface of the hull is well captured, and the thin boundary layer is obvious along the
convex keel region (see Figure 13: top). At the propeller disk, the contours of the axial
velocity show the round shape favourable to efficiency of the propeller, and a very weak
vortex close to the upper corner of the propeller hub is also observed in Figure 13: middle.
This vortex is not stronger than that in the wake at x/L=1.01, as shown in Figure 13:
bottom. In the wake, the contours of the velocity (u) display a rather slower recovery near the
free surface.

The overall features in Figures 8–12 indicate the presence of the strong bow wave systems
as well as the relatively weak stern wave systems. The former is clearly caused by higher
pressure at the bow and the complicated interaction of the bulbous bow with the free surface.
The latter is due to the effect of the transom stern. A shoulder wave system near the midship
is also distinct. Therefore, the method successfully simulates the complex interaction of
viscous flows with the free surface around the HTC model.

Figure 12. Pressure contours on the hull surface at the finest mesh, the HTC model (Fn=0.25 and
Rn=1.255×107).
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Figure 13. Velocity vectors (�, w) and the axial-velocity (u) contours at the finest mesh, the HTC model
(Fn=0.25 and Rn=1.255×107). Top: near the stern (x/L=0.9). Middle: at the propeller disk. Bottom:

in the wake (x/L=1.01).
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4. CONCLUSIONS

Based on the original FINFLO RANS solver, the method for simulation of viscous steady
free-surface flows around realistic hull forms with a transom has been developed. The
dry-transom model for the treatment of the flow off the transom has been proposed and it
performs well. The calculated results are compared with the experimental data at two Froude
numbers of 0.25 and 0.28. They agree well with the measured results available. Moreover, the
method is capable of reproducing many features of the interaction of a viscous steady flow
with the free surface. An overall degree of accuracy has been achieved by this method. It is
expected that the present calculated results can provide information for analysis and design of
the ship.

It should be noted that the damping of the far-field waves, especially in the wake, is strong
due to the effects of viscous and/or the grid size. The adaptive grid could probably be
improved for calculating results. Furthermore, we will consider the effects of the propeller and
the appendages.
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